Dynamic Hierarchical Compact Clustering Algorithm

نویسندگان

  • Reynaldo Gil-García
  • José M. Badía
  • Aurora Pons-Porrata
چکیده

In this paper we introduce a general framework for hierarchical clustering that deals with both static and dynamic data sets. From this framework, different hierarchical agglomerative algorithms can be obtained, by specifying an inter-cluster similarity measure, a subgraph of the β-similarity graph, and a cover algorithm. A new clustering algorithm called Hierarchical Compact Algorithm and its dynamic version are presented, which are specific versions of the proposed framework. Our evaluation experiments on several standard document collections show that this algorithm requires less computational time than standard methods in dynamic data sets while achieving a comparable or even better clustering quality. Therefore, we advocate its use for tasks that require dynamic clustering, such as information organization, creation of document taxonomies and hierarchical topic detection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Dynamic Hierarchical Compact Clustering Algorithm by Using Feature Selection

Feature selection has improved the performance of text clustering. In this paper, a local feature selection technique is incorporated in the dynamic hierarchical compact clustering algorithm to speed up the computation of similarities. We also present a quality measure to evaluate hierarchical clustering that considers the cost of finding the optimal cluster from the root. The experimental resu...

متن کامل

روش نوین خوشه‌بندی ترکیبی با استفاده از سیستم ایمنی مصنوعی و سلسله مراتبی

Artificial immune system (AIS) is one of the most meta-heuristic algorithms to solve complex problems. With a large number of data, creating a rapid decision and stable results are the most challenging tasks due to the rapid variation in real world. Clustering technique is a possible solution for overcoming these problems. The goal of clustering analysis is to group similar objects. AIS algor...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Back to the Future: Dynamic Hierarchical Clustering

We describe a new method for dynamically clustering hierarchical data which maintains good clustering within disk pages in the presence of insertions and deletions. This simple but eeective method, which we call Enc, encodes the insertion order of children with respect to their parents and concatenates the insertion numbers to form a compact key for the data. This compact key is stored only in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005